ATS762, Spring 2009

Biosphere-Chemistry-Climate Interactions Tuesdays and Thursdays, 14:00-14:50 AM, 212B ACRC

Instructor: Prof. Colette Heald
Atmospheric Chemistry Bldg., Room 107
491-8034 / heald@atmos.colostate.edu
Website: www.atmos.colostate.edu/~heald/teaching.html

Objective:

• To discuss and explore the sensitivity of the climate system to the chemical composition of the atmosphere with an emphasis on the connections to biospheric processes and feedbacks

Pre-requisites: ATS 621 or by permission of instructor

Office Hours: None officially scheduled. Meetings to be arranged by request.

Primary Text:

IPCC Fourth Assessment Report, Working Group 1 Report "The Physical Science Basis" (available online: http://www.ipcc.ch/ipccreports/ar4-wg1.htm or can be purchased via Cambridge University Press All other material for the class will be taken from the recent literature

Background Texts:

Daniel J. Jacob, Introduction to Atmospheric Chemistry, Princeton University Press, 1999. John H. Seinfeld and Spyros N. Pandis, *Atmospheric Chemistry and Physics: from Air Pollution to Climate Change*, 2nd Ed. John Wiley and Sons, 2006.

Course Structure and Grading Criteria:

Students will alternate leading weekly discussions on topic-relevant literature. The student will select 2-4 papers on the topic from the recent literature and will prepare a short (20 min) overview oral presentation on the papers. They will then formulate some questions for discussion and lead the class discussion of each topic. These presentations will be evaluated as well as their overall participation in discussions each week. Note that the Thursday discussion leader must provide the references for discussion to the class by email on the previous Tuesday. If you would like suggestions for relevant literature, speak with Colette the week before you are scheduled to lead the discussion.

At the end of the semester each student is to prepare a written proposal for research on a topic of their choice, related to the material discussed in this course. This proposal should be formatted and presented as a proposal to a funding agency, including a relevant survey of literature, motivation and objectives of research and methods proposed. Further guidelines and grading criteria will be distributed.

Grades are weighted as follows:

In-class Presentations: 35% Discussion Participation: 30% Written Proposal: 35%

Date			TOPIC	THURSDAY DISCUSSION LEADER	BACKGROUND READING
January	20	Tu Th	Intro/Course Outline/Schedule sign-up Review of Atmospheric Chemistry Concepts & Climate Change Predictions	Colette Heald	IPCC technical summary and section 7.1 Monson and Holland, 2001
	27	Tu Th	Biogenic VOCs	Leigh Patterson	Guenther et al., 2006
February	3 5	Tu Th	Biogenic aerosol: SOA and primary biological aerosol	Mandy Holden	IPCC section 7.5.1.3, 7.5.1.6 Griffin et al., 1999 Jaenicke et al., 2005
	10	Tu Th	Atmospheric nitrogen (biospheric sources, lightning, partitioning)	Katie Beem	IPCC section 2.10.3.4, 7.4.2 Schumann and Huntreiser, 2007 Martin et al., 2007 Jaegle et al., 2004
	17 19	Tu Th	Wildfires / Deforestation / Land use change	Gena Renninger	IPCC section 2.4.4.4,2.5, 7.3.3.1, box 11.4 Westerling et al., 2007
	24 26	Tu Th	The carbon cycle (feedbacks, lifetimes, changing sinks/sources, CO ₂ fertilization) w/ Scott Denning	Li Yi	IPCC section 7.3 Sarmiento and Gruber, 2002
March	5	Tu Th	Ocean biogeochemistry (Fe deposition, N fixation, phytoplankton) w/ Taka Ito	Laurie Mack	IPCC 7.3.4
	10 12	Tu Th	Atmospheric sulfate (DMS & CLAW hypothesis)	Xinhua Shen	IPCC section 2.4.4.1, 7.5.1.4 Charlson et al., 1987
	17 19	Tu Th	Sprii	ng Break – no class	
	24 26	Tu Th	Atmospheric methane (emissions and chemical production)	Bonne Ford	IPCC section 2.3.2, 7.4.1 Wuebbles and Hayhoe, 2002
April	31	Tu Th	Air quality and climate (Urban/regional/global, intercontinental transport)	Ezra Levin	IPCC section 2.3.6.2, box 7.4, 7.4.4 Jacob and Winner, 2008
	7 9	Tu Th	trunsporty	No class	Jacob and Wanter, 2000
	14	Tu Th	Stratospheric Chemistry	Kelley Wells	IPCC section 2.3.6.1/2.3.7, 7.4.6 WMO Report 2006 (Executive Summary) Apr 16: proposal topics due
	21	Tu	Climate and meteorology I	Anna Harper	IPCC section 3.5
	23	Th	(Atmospheric transport)		Mickley et al., 2004
	30	Tu Th	Climate and meteorology II (Global hydrological cycle) w/Chris Kummerow	Colette Heald	IPCC section 3.3, 3.4.2, 3.4.3, Table 11.2
May	5 7	Tu Th	Geo-engineering of climate (discussion both days)	Colette Heald	Special Issue of Climatic Change (2006) May 7: written proposals due